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ABSTRACT   
 

Advances in new sensor and wireless technologies—from auto-ID technologies to 

prognostics for anticipating product health—are ushering in a new generation of 

products that are ―aware‖ of their current status and thus able to perform functions 

related to their use, health, and maintenance.  At the same time, distributed 

intelligence and new information environments such as the cloud are enabling the 

coordination and synchronization of product-centered business processes, often 

remotely.  By linking smart products to smart processes companies are creating a new 

platform for providing next-generation intelligent services to their customers.  In this 

paper we present a framework for linking smart products (with embedded real-time 

diagnostics and prognostics based health management capabilities) to a service-

provisioning system to create a system of ―self-aware‖ product-centric systems.  The 

framework includes a powerful ―learning‖ engine capable of monitoring, analyzing 

and interpreting patterns of system/product behavior in real-time.  The learning 

engine provides the capability of information feedback for real-time, ―in-the-loop‖ 

control. This concept enables the service-provisioning network to provide customer 

services such as product health management at reduced maintenance costs, improved 

responsiveness to customer needs during use, and generally more efficient operations.  

This framework, being developed by the University of North Carolina, is a 

collaborative effort between the Center for Logistics and Digital Strategy and its 

partner companies to create the next generation of intelligent aviation services. 
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INTRODUCTION 
  

Prognostics-integrated intelligent aviation services represent a significant opportunity 

to not only achieve significant cost savings and enhanced product reliability, but also 

to develop new revenue-generating service offerings.  Developing these services 

requires companies to build ―self-aware‖ product-centric systems that link 

prognostics-enabled ―in the loop‖ products and intelligent support processes—in 

essence to build an intelligent envelope of smart services around a product.  While the 

primary focus in this paper is on products, the concept is extendabloe to phusical 

systems in general such as manufacturing systems or communications infrastructures.   

The central driver of these trends is the benefit derived from real-time, closed-loop 

support in which prognostics and other analytics serve as an integral element in the 

feedback control scheme. In this context, closed-loop describes to the capability of 

the complex product (for example, an aircraft) embedded in a smart support system 

(for example, a maintenance system) to self-monitor and regulate its activities based 

on a real-time comparison of the actual product performance with desired 

performance levels. 

Self-aware product-centric systems are being enabled by the convergence of new 

sensor technologies, new information environments like the Cloud and, most 

importantly, by new software tools capable of real-time extraction of useful 

information from highly complex, large-scale datasets, Possibilities include the 

extraction of ―significant details‖ from apparent noise, and hidden correlations across 

apparently unrelated sensor data.  The availability of Internet-based Cloud Computing 

provides a vehicle not only for computation and analysis, but also for communication 

between the product, the user, and also the manufacturer or controlling enterprise.  In 

essence, the Cloud makes it possible for a manufacturer to offer a range of services to 

the user across the product’s entire life cycle—from design and development through 

operational use until ultimate disposal or recycle. 

The advent of Internet technology with its TCP/IP protocol-enabled open-architecture 

offered the ability to make information posting and access available anytime, 

anywhere, in single copy, and searchable.  Thus, the ability to provide prognostics 

information along the chain, thereby closing the feedback loop, has been a reality for 

a several years.  The recent emergence of cloud computing provides a new 

information environment for integrating products and services to better serve the 

customer—from aerospace manufacturers to producers of consumer products. 

Until now, the bottleneck for prognostics-enabled services has been the human 

operator’s limitation in exploiting information in real time and recognizing complex 

relationships across large-scale information systems. A combination of rule-based, 

collaborative and learning technologies can be deployed as an underpinning to current 

business systems and as an enabler of a dynamic feedback loop—connecting, in real-

time, all control elements from the in-use, onboard diagnostics/prognostics system to 

the upstream and downstream manufacturing and production logistics chain, use, 

maintenance and other support processes, such as engineering change management, 

and R&D support.   



 

The goals of this paper are to: 1) advance the thinking about prognostics-enabled 

services in complex industries such as aviation; 2) provide decision-support 

capabilities for the intelligent use of sensored information in massively complex and 

distributed information environments; and 3) explore the potential for a new class of 

service offerings that envelop the product at all stages of its life cycle. 

 

MOVING FROM DIAGNOSTICS TO PROGNOSTICS 
 

As shown in Table 1 below, the general field of product health management has 

evolved as technical capabilities have become available. Until recently, many of the 

current applications focused on diagnostics, rather than prognostics. These 

technologies diagnose problems after failure or service degradation has occurred.  In 

the commercial aircraft arena, for example, The Boeing Company has developed The 

Mechanics Compass, a system that facilitates the airplane maintenance process by 

automatically gathering, organizing and presenting the most pertinent information 

required by a mechanic to identify the source of a specific system failure, as 

identified by observable symptoms and findings.  The Mechanics Compass uses 

technologies such as Bayesian Belief Networks and others that model probabilistic 

dependencies between the historical data linking cause and effect in order to correct 

failure.  

 

Table 1.  From Diagnostics to Self-Aware Systems 

 

Stage 

Description Enabling 

Technology 

Capabilities 

Diagnostics Sensored Product  Bayesian belief 

networks, statistical 

models, etc. 

Diagnose failure 

after the fact based 

on post-failure 

analysis  

Prognostics Product-in-the-

Loop  

Neural networks, 

machine learning, 

etc. 

Anticipate failure 

or other state that 

requires action to 

maintain design 

performance 

specifications 

Self-Cognizance Online Product-in-

the-Loop  

Intelligent  Support 

Processes  

Cloud computing, 

machine learning, 

etc. 

Closed loop 

information 

feedback system 

creates integrated 

support system 

 
Prognostics implies a framework of methodologies embedded within an information 

environment that permits the reliability of a system to be evaluated and 

communicated in real time based on its life-cycle state and relevant environmental 

conditions.  Prognostics about future states enable the user to take any necessary 

actions ranging from averting failure in the event of broad performance deterioration 



 

to changing operating conditions or environment to achieve performance 

improvements and reduce life cycle costs. 

 

Thus, prognostics involves [do we use prognostics as a plural or singular term?] the 

process of predicting the future state of the system.  A prognostics system is 

comprised of sensors, a data acquisition system, and micro-processor-based software 

to perform sensor fusion, analysis, and reporting/interpreting of results.  Smart 

Sensors are typically built into products with the ability to relay this information to an 

operating base, thus enabling on-board diagnostics and prognostics.  [generally smart 

sensors have built-in A/D conversion for bus interface, but not actual computational 

capabilities] 

 

We refer to prognostics-enabled products as ―products-in-the-loop‖ systems because 

the products have the ability to assess their own health and to direct that information 

to appropriate functions or organizations that make decisions about how to respond.  

After an action is taken, usually, but not necessarily, initiated by a human, the product 

is able to sense its new state and continue to self-monitor for changes in health or 

other conditions. 

 

Offline prognostics for vehicle health monitoring, as well as remote diagnostics, are 

used extensively in complex products like aircraft engines and long haul vehicles for 

both surface and rail transport, and on defense products such as weapons platforms 

and munitions.  More recently this technology is infusing commercial products such 

as washing machines, personal automobiles and even buildings. 

 

“CLOUD” CONNECTED PRODUCT HEALTH MANAGEMENT 

 
Today, Cloud Computing broadly refers to a trend in service delivery where 

application services are moved onto the Internet—termed the Cloud.  Yet Cloud 

Computing also holds the promise of advancing physical systems diagnostics and 

prognostics to a new level of speed and cost-effectiveness.  

 

Up till now there has been a progression of prognostics capabilities for complex 

physical systems such as aircraft, ships, automobiles, and related complex 

manufacturing systems starting with bench level analysis and mathematical model 

based prognostics.  The subsequent generation introduced diagnostics downloads to 

base stations, either on location (e.g. CARB-based diagnostics downloads via data 

cable in the auto industry) or online, for faster response and corrective action. 

 

The more recent prognostics concepts allowing for onboard real time computation, 

alerts, and prognostics, including alerts to maintenance and C&C, are those described 

so far in this paper.  These approaches rely on a real time ―observe, learn, interpret, 

and act‖ methodology enabled by product embedded intelligence.  A drawback of 

such embedded systems is the added complexity within the product and the associated 

cost. 

 



 

With emerging ―Cloud Computation‖, such disadvantages may be overcome.  Cloud 

embedded computational software can process either continuously or batch 

transmitted data, so that the only required product embedded capability is sensing and 

internet connectivity.  For example, the use of Cloud-embedded associative memory 

based learning agent software discussed above can be used for a fleet of vehicles 

(aircraft, automobiles, etc.), or a number of machines in a manufacturing system, 

without having it installed on each machine or even bases station. 

 

Thus, intelligent products with embedded diagnostic software are replaced by ―street 

smart‖ products, saving cost and letting the ―cloud‖ do the work – a form of ―cyber-

outsourcing‖.  A similar argument holds for base station embedded software; using 

the ―Cloud‖ avoids software redundancy and eliminates the need for local software 

maintenance, updating and the associated manpower. 

 

So we see the promise of ―street smart‖ products as the future truly intelligent and 

self-aware entities in the physical world of machines, be they planes or cars or 

manufacturing systems, communications infrastructures, or the power grid.   

 

THE EVOLUTION OF SELF-AWARE SYSTEMS  
 

With the advent of Internet based connectivity and the emergence of Cloud-based 

near real-time computation, sensored products are increasingly being integrated 

within a (near) real-time information and computational environment with intelligent 

support processes which allows for autonomous intervention (c.f. change in operating 

characteristics) with little or no human intervention.  The prognostics and analytics 

that support self-aware systems may be simple rules that link an aware state with a 

response.  Increasingly, however, these intelligent support systems are differentiated 

by the ability to learn from past experience the ―best‖ action to restore normal 

operating modes or avert failure.    

 

Another barrier beyond speed is the ability to process extremely the extremely large 

set of parameters that are required to represent the operating state of a complex 

system—and learn. The emergence of new tools, in particular associative memory, 

that can fully exploit the information content and MEANING in these extremely 

large, complex and distributed datasets. Most, if not all, current data mining and other 

pattern recognition techniques are ineffective—and expensive—because they are 

unable to process the voluminous amounts of information typical of large-scale, 

sensored environments.   

 

Many of today’s prognostics use technology that is based on statistical inference in 

which observed events in the past are used to assess statistical probabilities (Bayesian 

approaches) or to fit statistical models (regression or neural nets, for example).  These 

approaches cannot handle large data sets efficiently, may involve model building, and 

often require off-line analysis.   Innovative new technologies, such as associative 

memory technology, bridge these barriers thereby enabling real-time in-the-loop 

autonomous control of complex products and their physical support processes through 



 

its ability to discern patterns in large-scale, distributed, dynamic data that are not 

detected by traditional methods. 

 

Machine learning methods (c.f. artificial neural networks, genetic algorithms, and 

decision trees) typically learn from an incomplete set of examples. These 

technologies, like neural nets, have had limited success with extremely large-scale 

datasets. At their current state of development, neural computing approaches have 

limited suitability for massively complex, large-scale problems due to an inherent 

problem with scaling.  For example, patterns involving as hundreds or thousands of 

factors such as airframe vibrations, engine temperatures, oil viscosities, oil pressures 

and so forth, can signal the impending shut-down of an engine or catastrophic part 

failure, allowing the pilot and/or ground crews to avoid unanticipated failure.   

One pattern recognition technology, referred to as associative memory, has proved to 

be highly scalable and efficient in cases of extremely large datasets. The 

implementation of associative memory used by the authors was developed by Saffron 

Technology in Cary, North Carolina.  Details of the technology and its applications 

are provided on the company web site (www.saffrontechnology.com). 

Saffron’s associative memory, modeled after the human brain, exploits a proprietary 

lossless (i.e. does not lose information) compression routine that is capable of 

creating extremely compact models. Further, the Saffron implementation is able to 

operate on compressed datasets, unlike other pattern recognition technologies, 

thereby enabling dramatic reduction in storage and CPU hardware, thus enabling the 

application of associative memory technology in a distributed, ―on-board‖, 

environment.   

 

PROGNOSTICS-INTEGRATED INTELLIGENT AVIATION 

SERVICES 
 

While the fully-sensored and always connected ―things‖ has received a lot of 

attention lately, largely under the heading of ―internet of things,‖ what hasn’t received 

a lot of attention are the new business models and revenue-generating opportunities 

that will be possible in this world of self-aware products. Self-aware products change 

the traditional pathways of information flow in companies. But, more importantly, 

they change the traditional pathways of information flow between products and 

customers, between customers and manufacturer, AND between products and 

manufacturer.  At the heart of the change is the fact that the basic ownership model 

between product and customer is broken and redefined in three dimensions as 

follows: 

 

Products and Customers. Under the old ownership model, the product was the 

responsibility of the owner upon purchase. While warranties could provide an 

extension of the ownership, the customer assumed control of the product through its 

useful life.  Further, the operation and use of the product was controlled directly by 

the customer.  As an example, when a customer bought a product s/he must often 



 

adjust the settings to personalize it.  A self-aware product linked to the user’s 

personal cloud would automatically adapt the product to the user’s specifications 

based on a retained profile, or even adapt the product’s settings based on the context 

of its use. In the example of prognostics and health management, products could 

automatically adjust operating parameters in order to enhance reliability.  

 

Customers and Manufacturers. Under the old ownership model, after the arms-

length purchase transaction the company and consumer relationship had been 

completed.  However, the self-aware product provides a continuing link between the 

company and the customer that can serve as a source of additional revenue through 

the provision of a range of services over the product’s lifetime.  In the example of 

prognostics and health management, a current example is the relationship between 

engine manufacturers like General Electric and airframe manufacturers like Boeing in 

which GE monitors the operating characteristics of an in-flight engine for potential 

engine failures. 

 

Products and Manufacturer. While the manufacturer has acquired new opportunities 

to gain additional revenues under the new model, its product responsibilities also 

increase.  The company may now find itself responsible for the lifetime care of every 

product that it manufactures even as the product acquires multiple users over its 

lifetime.  The company will retain the complete lifecycle data from operation and 

maintenance.  The company may now also be responsible for disposal and end-use 

practices.  For example, in the care of prognostics and health management, an 

airframe manufacturer may be required to tag and track all materials for appropriate 

recycle or disposal upon disposal, or to track sustainability metrics over the lifetime 

of the product. 

 

CONCLUSION 

 
The convergence of new sensor technology, cloud computing, and powerful learning-

capable pattern recognition technology is making it possible for companies to make 

better health decisions about their assets and products across their entire life cycle—

from manufacture through useful lifetime and, finally, disposal.  Sensor technology 

has made large strides, as has communications technologies.  Currently, software is 

reaching a level of maturity in which prognostics can move into more widespread use 

in commercial applications.  And information environments like the cloud enable a 

pervasive environment for data management. The Center for Logistics and Digital 

Strategy at the University of North Carolina is working with its clients to develop 

new concepts and technologies that can help to transform business practices with new 

prognostics-enabled self-aware systems in both commercial and defense sectors. 
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